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PREFACE

International Energy Agency

In order to strengthen cooperation in the vital area of energy policy,

an Agreement on an International Energy Program was formulated among a
number of industrialised countries in November 1974. The International
Energy Agency (IEA) was established as an autonomous body within the
Organisation for Economic Cooperation and Development (OECD) to administer
that agreement. Twenty-one countries are currently membersuof the IEA,
with the Commission of the European Communities participating under a
special arrangement.

As one element of the International Energy Program, the Participants
undertake cooperative activities in energy research, development and
demonstration. A number of new and improved energy technologies which
have the potential of making significant contributions to our energy
needs were identified for collaborative efforts. The IEA Committee on
Energy Research and Development (CRD), assisted by a small Secretariat
staff, coordinates the energy research, development and demonstration
programme.

Energy Conservation in Buildings and Community Systems

The International Energy Agency sponsors research and development in a
number of areas related to energy. In one of these areas, energy
conservation in buildings, the IEA is sponsoring various exercises to
predict more accurately the energy use of buildings, including comparison
of existing computer programs, building monitoring, comparison of
calculation methods, etc. The difference and similarities among these
comparisons have told us much about the state of the art in building
analysis and have led to further IEA sponsored research.

Annex V Air Infiltration Centre

The TEA Executive Committee (Building and Community Systems) has high-
1ighted areas where the level of knowledge is unsatisfactory and there
was unanimous agreement that infiltration was the area about which least
was known. An infiltration group was formed drawing experts from most
progressive countries, their long term aim to encourage joint international
research and to increase the world pool of knowledge on infiltration and
ventilation. Much valuable but sporadic and uncoordinated research was
already taking place and after some initial groundwork the experts group
recommended to their executive the formation of an Air Infiltration Centre.
This recommendation was accepted and proposals for its establishment were
invited internationally.

The aims of the Centre are the standardisation of techniques, the
validation of models, the catalogue and transfer of information and the
encouragement of research. It is intended to be a review body for current
world research, to ensure full dissemmination of this research and based




on a knowledge of work already done to give direction and a firm basis for
future research in the Participating Countries.

Current participants in this task are Belgium, Canada, Denmark, Netheriands,
New Zealand, Norway, Sweden, Switzerland, United Kingdom and United States
of America.



1 Introduction

The development of computer programs for the modelling of energy flows in

buildings was found to be inhibited by a 1lack of information on the

ventilation heat loss due to air infiltration. This led to the setting up
of the Air Infiltration Centre under the auspices of the International

Energy Agency in order to gather, disseminate and analyse such i{nformation

as 1is available. Part of the brief of the AIC was to validate computer

models of air infiltration in buildings with a view to determining which

parameters were important.

In such computer models, the driving pressures for the flow of air through
a building envelope are a combination of:-

1) Wind pressure

2) Stack pressure, arising from temperature differences across the
building envelope, and

3) Pressures due to mechanical ventilation systems,
of which the wind pressure proved to be the most difficult to specify.

During the Air Infiltration Centres model validation exercise! , three
houses were studied for which different methods of predicting the pressure
distribution were used. The houses used were the Maugwil test house in
Switzerland which had an exposed lie, one of the HUDAC Mk XI houses which
were in an open suburban area and were partially sheltered (Canada), and a
house 1in Runcorn (England) which was on a fully urban site, surrounded by
buildings of approximately the same height.

Attempts were made to use full scale pressure differences measured in situ
(Maugwil)(para.(1.1)), existing pressure coefficients (Cp) from wind
loading tables together with a crude method of estimation for intermediate
wind directions (Maugwil, HUDAC, Runcorn)(para.(l.2), and a set of wind
tunnel results where the mean Cp was given as a function of relative height
(z/H) for a range of shelter conditions (Maugwil, HUDAC,
Runcorn)(para.(1.3)).

1.1 Full scale pressures

The attempts to employ full scale measurements pointed up several
difficulties in their use. The averaging procedure can have a profound
effect. The wind may, for instance, veer within an averaging period,
without necessarily altering its mean speed, such that the pressure
distribution changes. Unless there is a sufficient frequency of
measurements to detect this change, there may ensue a switch of sign for
the measured pressure, leading to a much reduced average pressure
difference. Such a condition applied for case 5, and to a lesser
degree, cases 4 and 10. (see Fig. (1.la)) Thus, it 1is important in
these cases to record a full set of local wind data on a continuous
basis so that these situations can be identified.
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Fig.(1.1la) Case by case comparison of observed and calculated
infiltration rates for the Maugwil House.

Fig.(1.1b) Comparison between calculated and measured air infiltration
rates using "isolated building" pressure coefficients, for
the Maugwil House.




1.2 Pressures from wind loading codes

The pressure coefficients from the British Code of Practice CP3
(Ch.V,Pt.2) have been used with a multi cell air infiltration model for

the case of the Maugwil Test House. This is an isolated, detached

single family dwelling 1in an exposed position. Windspeeds were high

during the measurements. Agreement between the calculated and measured
values is good. (see Fig (1.1b))

Attempts to use CP3 pressure coefficients with the HUDAC Mk XI House,
which s partially sheltered proved much 1less satisfactory.
(see Fig.(1.2))
Calculated and measured values for a house in Runcorn on a fully urban
site bore little resemblance to one another when using CP3 coefficients.
(see Fig (1.4))

1.3 Pressures from wind tunnel studies

This discovery of the inadequacy of the wind loading pressure
coefficients to account for the effects of shelter led to the use of the
aforementioned wind tunnel results from the Division of Building
Research, NRC Canada. (Shaw?). These gave a much improved result for the
two sheltered houses Figs.(1.3) and (1.5), but not for the exposed
house (1.6).

In the case of wind loading pressures and wind tunnel results, the
presentation of the data in the form of graphs and tables with only a
limited number of wind directions was also found to be a handicap, since
in the present application all values are required, not just those for
which extreme conditions exist.
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Fig.(1.2) Measured vs. calculated infiltration rates for the
HUDAC Mk XI House.(using CP3 pressure coefficients)
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1.4 Summary of contents

This report contains a review of published information on the pressure
distribution on buildings. It also presents a novel technique for
presenting pressure coefficient data for use in the prediction of air
infiltration rates.

More specifically, the report first includes a review of existing codes
of practice on the prediction of wind pressures on buildings. Then the
results of a survey of past research are discussed in relation to the
requirements for the prediction of air infiltration rates. This
research included measurements in wind tunnels and 1in the real wind,
theoretical calculations of surface pressures, and some supplementary
studies on flow around buildings, over topography, and around
windbreaks. (These were included since they provide a means for
estimating the 1local wind profile in more detail.)

The problem of flow reversal has been reviewed.

The evident inadequacies of the present data provided the incentive to
develop a technique for more suitably presenting pressure coefficient
data. This development, based on a detailed analysis of the results of
some of the wind tunnel studies, is described in Chapter 7. The outcome
1s a technique which is both compact and "computer friendly".

Some further improvements in accounting for the effects of shelter have
also been sought, particularly with respect to the urban setting.

The choice of reference wind or reference pressure for the calculation
of pressure coefficients is also considered.

Finally, some of the gaps in our present knowledge which remain to be
filled are summarised.




2 Existing codes of practice

There are several existing codes of practice which contain tables of
pressure coefficients for buildings of various shapes. These include:-

(A) B.S.I. CP3. Ch V. Part 23,

Chapter I(C) of this document is now BS5925%. The pressure coefficients
used in Ch.V. are used, omitting the extreme values, for the calculation
of natural ventilation rates.

(B) National Building Code of Canada (1975), N.R.C. Ottawa, Canada>

This code made use of the pressure coefficients in the Swiss code of
practice, which were based on the wind tunnel studies of J. Ackeret®,’
(see Table (2.1))

More recently, the results of a wind tunnel study on models of low
buildings, carried out at the University of Western Ontario, have been
included. (Davenport®8,9)

(C) American National Standard AS58.1 (1972)}0, - ANSI and the Southern
Building Code of the US. both make use of the UWO data mentioned above.

(D) Australian Standard AS 1170 Part 2 (1975)1!
An extensive summary of the contents of the above can be found in Sachs!?

A1l of the pressure coefficients used 1n these codes of practice are
primarily intended for wind loading applications. The wind equations with
which they are used, and the original parametric studies used to produce
them apply strictly only to strong wind conditions. Where such conditions
do apply, it is reasonable to use these values.

It should be noted that the values quoted are the maximum values for the
particular facade. Where the pressure coefficient is fairly uniform for
the facade the approximation can be quite good. Where, however, the
pressure distribution is non-uniform, the extreme values can differ widely
from the mean value for the facade. In the case of the windward face this
difference can be as much as 50%.

The proportions of the area of a model of a 1low rise building with
different values of pressure coefficient, for a wind angle of 45 degrees,
are shown in Fig.(2.1) (Davenport®). It can be seen that over half the
surface area of the building has a pressure coefficient with an absolute
value less than 0.1. This demonstrates, clearly, the need to use wind
loading Cp's with extreme caution.

Davenport also remarked that each of the components used to calculate the
wind pressure itself represents a statistical population with a mean,
standard deviation and coefficient of variation.

Where an open country, standard, 10m reference wind is used, then:-
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Fig.(2.1) a) Pressure distribution on a low rise building for a wind
angle of 45 degrees.
b) Distribution of surface area subject to different ranges
of pressure value. (Davenport? )

estimated exposure) ( shape dynamic) model )
wind = (q).( height ;. factor).( qust ;. uncertainty; (2.1)
pressure factor Cp factor factor m

(1) (2) (3) (4) (5)

Where:-

= 2
(1) The reference pressure q O'S'OV(ref)

For wind loading, this is related to the chosen return time and the
dispersion of the values for the site. For ventilation calculations, one
might use, for example, the hourly values for the site during a year, or

any other time scale appropriate to that for the calculation being
undertaken.

(2) The exposure height factor (Ce) allows for the conversion from open
country terrain to the 1local terrain class. It is a function of the

roughness length Zo. Davenport® gives the following relation for the
mean values:-



Ce = 0.62 - 0.148.1n Zo (2.2)

The coefficient of variation is of the order of 16%.

(3) The shape factor or pressure coefficient Cp is a strong function of
wind direction and of the form of the building. Therefore one would
require the distribution of wind speed and direction throughout the year
for adequate modelling.

(4) The gust factor Cg multiplied by Cp gives the peak pressure
coefficient. Its mean value can be taken as 1 for ventilation modelling
purposes.

The combined coefficient of variation for Cp.Cg is of the order of 16%.
This allows for the effect of turbulence.

(5) The "model uncertainty factor", m, is intended to allow for the scatter
in the wind tunnel model results on which the pressure coefficients are
based, and of the full scale pressure measurements with which they are
compared.

If these elements are statistically independent, then the mean pressure can

be represented by:-

P = q.Te.Cp.Cq.m (2.3)

and the coefficient of variation V_ for the pressure (=st.dev./mean) is
given by:- P

(1+v %) = (1+vq2).(1+vCe2).(1+v 2y . (1+V 2)(1+vm2) (2.4)

p Cp Cg

This statistical representation of wind 1loading pressures 1is rapidly
becoming the accepted form forinternational and national standards.

Other standards which 1{include tables of pressure coefficients are:-
The Swedish Building Code SBN-1980

The Norwegian Building Code

The French Building Code: Régles NV 65

German Standard DIN 1055 Pt.4513
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Table (2.1) Pressure coefficient data for simple building shapes
(after Ackeret®,7, Sachsl?)

a) Simple square building.

1 External pressure coefficient C, ,forh:b:[=1:4:4
8 [a]B|c|p|e]|F|ac]|H
Gable rooty 0 + 3°
= r——— 0° +09|—-03|—-04]| —-04|—-08|—08| —03}—-03
J_OI 15° | +o08|—03|—-01|—-05]|—-07|—08|—02]|—03
L A M CRE 0 UL O ae ST et 45° +05|] —04}405|—-04 09l —06|—-06]—03
ft———— b —
Tl LR ST 15° | For section 0" (side C) Cjq = —~08
PR 45° | Forsection*m” Cp o= —20:"n" Cp o= —10
N WG G
9 ]
0 4 b ® | Internal pressure coefficient c, , for § = 0° | 15° | 45°
| o} o+ H
i % l Openings uniformly distributed +0-2 | £02 | £0-2
- 5 Openings on side A predominating +08 | 407|404
Openings on side B predominating —0-2{—-03]| —04
Openings on side C predominating —03| —02| 404
2
Internal pressure coefficient C, ,for h:b:[=1:1:1
Cable rools 0+ 10° 8 I A | B I C D E F G H
0° | +09|—05{—06|—06|—-07|—07]—05|—05
15° | +08|—05|—07|—05|—07|—06[—05[—06
45° | 405 | —05|+0s5]|—05|—08|—05|—05|—04
45° For section *m” Cp g = —1:2; “n” C} 4 = —08
8 E \T nlel| 6 Internal pressure coefficient C, , for § = 0° 15° 45°
o A B
ll F | H Openings uniformly distributed 402 | £02| 402
U Openings on side A predominating +08 | +07} 404
o Openings on side B predominating —04 | —04| —04
Openings on side C predominating —0-5| —06 ]| 404

Gable roofs 0~16"

T

-—

bl Ao, Lo

s
3/

-,

o4 i aELS

»
n
I

M Ay |

External pressure coefficient C, , forA:b:1=25:1:1

8 |a[B]c|[p]Ee|F]ac|H
o |(4+09|-06|—07|~-07}|—08}|—08|-08|—08
15 | +08|—0s|—-09f—06|—08|—08|—07|—07
45> | 4+05| —05|+0s|—05|—08|—-07}|—07|—05
45° For section “m"” C3 4= —10;"n" C5 4= —08
Internal pressure cocfficient C, ( for § = 0° 15° 45°
Openings uniformly distributed 402 | +£0-2 | £0-2
Openings on side A predominating +08 | +07 | +04
Openings on side B predominating —05| —0S5)—-04
Openings on side C predominating —06| —08]|+04

(Cy = maximum local pressure)
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b) Rectangular building. Closed, saddle roof.

External pressure coefficiont C, ,

h:b:lem1:8B:16

Internal pressure coefficieat C,,,

B A B C D ) F [¢] H Wind direction § = 0° | 45° | 90°
o |+08|—05|—05[-05|+02|+02|-06{—06 Opening uniformly distributed 402(£02(£02
45° 14035|—05|+04|—03{+01|-01]—08|—05 Side A predominaling +0-7({4+04}-0.2
90° |-03|-03[+09]|—03]|—05(-01[-0-5(—01 Side B predominating —04(—-04(-02
Slde C predominating —04|4+03|408
£o For section *m” C; g = —1-0
External pressure coofficient C, , h:b:1=225:2:5 Internal pressure coefficient C, ,
g [alB]c|[p[e]F]lo|[H Winddrecins= 0o | as° | 90°
0° [+09|—05[—07|-07[-06|—06[—03[—05 Opening uniformly distributed +0-2 (402|402
45° |4+06|—05}+04]-05|-09(—07|-06|—07 Side A predominating +08{4+05|—04
90° |—0-35|—0-5|4+09!-04(-08|~02]—08(—0-2 Side B predominating —04|—04|—-04
Side C predominaling —06+03(+08
45° | For section "m™ C; 4 = —1'3
Externel pressure coefficient C, , hib:lm25:2:5 Internal pressure coefficient C, ,
] A B C D E F G H Wind direction f ~ 0° | 45° | 90°
0° |+09[—08|—07]-07|-06|-06{—05|—0-%5 Openlng uniformly distributed 1.0:2(¢£02]+02
43° |4+06{—03|+04|~04|—04(—035|—06]—07 Side A predominating +08)405|—04
90° |—0-5|—0-5]4+09|-04|—07(—-02|—-0-7{—0-2 Side B predominating —04|—04(-04
Side C prodominating —06(+03|+08
45° | Forsection “m™ C; o= —12
External pressure coefMcient C, , h:b:1v22:5:2:5 Internal pressure coefficient C, ,
B A|B | C|D|E|F|QG|[H wWinddietionf = 0° | 45° | 90°
0° [+09|—05|—08[—08|+03|+03|—06|—~06 Opening usiformly distributed 40-2(402{402
45 [+06|—05|+04!—04|4+03|—-01]|—05}—06 Side A predominaling +08|+05{—-04
90° |—05(—05(4+09(—04]|—08(~02|—08|—02 Side B predominaling —04|—04(-04
Side C predomlnating —=07(+03|4+08
75° | Forsection "m"” € —1-2
External pressure coefficieat C, , h:db:lm2:1:2 Internal pressure coefficient C,
p |a|B|lc|D|E|F|G|H Winddirectons— 0° | as° | s0°
0° [409|—05[—08]—08(—10|—1-0|/—0-5|—05 Oponlng uniformly disuibuted 102402402
45° |+06|—05|+04|—04|—03|—04(—03[~06 Side A predominating +08|+0-3 (08
90° [—06|—06|4+09{~04[—07]—05|—07|—0% Sido B predominaiing —04{—04|—05
Side C predominating —0-71403(4+08
0° | Forsection"m™ C; = —1-2
External preasure coofficlent C, , Rd:lael:24:12 Internal pressure coefficlent C, ,
[} A B C D E F G H Wind dlrection f = 0° | 45° | 90° | 180°
. -
0° 1409|—=035]|—06]—-06]|—03[—=035|—-03(~0-5 Opening uniformly distributed +02(+£02]402(40-2
43° (+0-5|—06]|+04[—04]—1-2|—07[—1-1|—-0-7 Side A predominating +08(+04|—02]—-03
90° (—-04|—03]|409|—-02{=03| 0 |-03| O  Side B predominating ~04|=0-5|—01|+07
180° |—0-414+0-8(=07(—=07|+01]40-1(+02[+02 Side C predomlnating —05|+03|+08(-06
Roof EF predominating —04(—08| O 0
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3 Pressure distribution on a building

3.1 Derivation

The pressures experienced by a building are determined by its size,
shape and local windfield.

It 1s not yet possible to give a complete description of flow around all
types of structure, due to the complex nature of the interactions
between the wind and the building, although it is possible to arrive at
some general conclusions for relatively simple building shapes.

Ideally, full scale ©pressure measurements should be made.
(see Chapter 5)

This is not always possible, - at the design stage the building does not
yet exist, 1in which case a properly conducted model test is the next
best alternative. (see Chapter 6)

Even this may not be a practical alternative. In the early stages of a
project, or where the size of the development is large, or the situation
is complex, the costs of running a detailed wind tunnel test for the
determination of the air 1infiltration alone would be prohibitive.
Making use of the results of a wind loading study is a possibility for
most high rise buildings, although there have been doubts cast on the
applicability of the pressure coefficients derived for the strong wind
case to Tow windspeed conditions. This also applies to the pressure
coefficients given in the various bu11d1n? standards which are intended
for wind loading applications. (see Sachsl2?)

For afir infiltration calculations one can discard the extreme local
values of pressure coefficients in the wind loading code.
(see Chapter 2) These usually apply to areas which are small compared
with, for example, the area of the facade corresponding to the wall of a
room. Since the wind 1loading pressure coefficients represent time
averaged, spacial maximum values, they go some way towards compensating
for these Tlocal effects. This is the approach used in BS5925, in which
the whole face pressure coefficients from CP3 are used for calculations
of natural ventilation. The fluctuating component of the pressure is
still required, however, to allow for the calculation of flow reversal
in a crack.

3.2 A general description

As the wind blows over the building, the air approaching it is
decelerated and a positive pressure appears. The air 1is deflected by
the front face and the flow separates at the salient edges formed by the
corners of the building and the edge of the roof. This gives rise to
negative pressures, which may be large relative to atmospheric pressure.
Negative pressures are also experienced on the rear facade of the
building in the wake region.

The pressure distribution on the roof depends on its geometry. Handa!"
quotes a value of 30 degrees for the critical roof pitch, above which a
wind blowing normal to the eaves will raise a positive pressure on the
windward side of the roof. The full scale Aylesbury experiment
(Eaton and Maynel!5,16), where the roof pitch was varied between 5
degrees and 45 degrees indicates a critical value of 22.5 degrees.
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The pressures experienced all vary with time due to the unsteady nature
of the flow in the natural wind.

3.2.1 Effect of building geometry

General:-

For a simple isolated rectangular 1low rise building without
projections or overhangs, with the wind blowing normal to the roof
ridge, the maximum pressure occurs in the centre of the windward
wall. The pressure drops off rapidly as the corners are approached.
The largest negative excursions occur closest to the edges where flow
separation takes place. Commonly, the flow on the front face below
the stagnation point is downwards and away from the building at
ground level. This forms the "horseshoe" vortex in which the air
follows a spiral path until it spills around the sides of the
building. The exact pressure distribution on the flank and lee faces
of the building will depend on the building geometry. A tall
building gives rise to more upward deflection of the flow and
therefore greater suctions in the roof area. When a wall is long in
the direction of flow, the flow which detached at the 1leading edge
may reattach. This can alter both the magnitude and position of the
regions of maximum suction. (see Figs. (3.1) to (3.3))

When the wind approaches the building at an angle, the pattern of
flow 1s rather different (see Figs. (3.4), (3.5)). The building now
presents two faces to the oncoming wind, which divides at the leading
corner in proportions which depend on the angle of approach to the
two faces. The pressures will be positive or negative accordingly.
There is less upward flow than in the case of normal flow, so that
roof suctions are generally lower in magnitude. When the roof pitch
is less than about 10 degrees, very large negative pressures can be
experienced (Handal*), near the leading corner, due to the formation
of separation vortices. (see Figs. (3.6), (3.75)

3.2.2 Effect of overhangs and projecting walls

These have the effect of trapping the air on the windward face, thus
smoothing the pressure distribution. The pressure experienced
remains near the maximum value between the stagnation point and the
projecting surface, e.g. as shown in the wind tunnel studies of
Jensen and Frankl7. See Fig (3.8)

There 1is a corresponding effect on the flank surface pressures.
Since less of the flow 1is diverted over the roof, the suction
experienced 1s much less intense.

Wall mullions and projecting balconies have a similar effect. The
pressure distribution is exaggerated. On the windward face, positive
pressures are more positive, and on the leeward faces, the negative
pressures are efther unchanged or more negative. As above the
pressure gradients on the flanks are reduced.

In the case of a flat roof with a parapet, the edge where flow
separation occurs is raised above the level of the roof. Most of the
suction 1s experienced by the parapet structure itself. The wake
eddy for the parapet thus ventilates that for the roof. The result
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Fig.(3.1) Flow past a rectangular building with the wind direction
normal to the long face.
(from Penwarden and Wisel® reproduced by permission of
the Controller, HMSO, Crown Copyright)(also Figs.3.2 to
3.5 and 3.9)

is that peak pressures and pressure gradients are reduced. As the
size of a parapet increases with respect to the size of the building,
so its share of the Toad due to flow separation increases also, s$oO
that its effectiveness is increased. (see Fig. (3.9))
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Fig.(3.3) Illustration of flow reattachment.
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Fig.(3.4) Plan view of flow around a rectangular building with
oblique wind incidence.

Fig.(3.5) Pressure distribution on the walls.
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Fig.(3.6) Pattern of flow .

Fig.(3.7) Pressure
distribution over the roof.

3.2.3 Effect of cladding

The presence of an open cavity e.g. behind cover boarding
(Lindquist!?), can exert a powerful influence on the pressure
distribution experienced by the true wall of the structure. The
capacitance and inertance of the cavity and the elasticity of the
cladding leads to the damping out of spacial variations in pressure,
and a reduction in the amplitude of pressure variations, particularly
for the higher frequency components. This applies mainly to
background leakages.

3.2.4 Effects of nearby buildings

In the event that a building lies close to another which is much
larger, the flow experienced by the smaller building is dominated by
that around the 1larger, especially when the larger building is
upwind§ to a degree dependent on the distance between  them.
(Phaff2%, van Dalen?!)

If the test building lies in the area of the descending wake, the
flow may be nearly vertical, giving positive pressures on the roof
and negative pressures elsewhere. This is a particularly important
consideration when positioning flue outlets, in order to avoid the
problem of flow reversal.
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3.2.5 Pressures on chimneys and flues

When modelling air infiltration and air movement in a building it is
necessary to know the pressures at the mouth of any chimney or flue
which may project through the walls or roof. This is a function of
the position of the chimney on the roof, the roof pitch, and the
height of the end of the flue above the surface of the roof.
(Lugtenburg?2, van Dalen2l)

3.2.6 Effects of boundary layer structure on the pressure
distribution

The main effect is due to the shape of the velocity profile. In a
constant velocity field, the horseshoe vortex formed at the foot of
the windward face of a bluff body is small and the stagnation point
is relatively 1low down the front face. Fig (3.10). When there is
boundary layer flow with the velocity decreasing as the ground is
approached, the horseshoe vortex becomes much Tlarger, and the
stagnation point much higher on the windward face. The horseshoe
vortex 1is still a notable feature when the wind blows onto a corner.
(Corke, Nagib and Tan-atichat23, Corke and Nagib2“, Hamilton25).

As yet, the effect on the general flow pattern of an accelerated flow
near the ground has not been widely investigated. This occurs in the
case of flow up a slope and in downslope flow caused by radiative
cooling of the ground at night, and is therefore of interest in hilly
terrain.
Another point of interest is that the flow down the face of a tall
building mixes cold air from aloft into the layers near the ground.
Thus, the value for the external temperature used in the calculation
gf1%he stack effect i1s, most appropriately, that near the top of the
uilding.
As turbulence levels increase, the drag on the building is reduced,
the intensity of the corner vortices is decreased, and there 1is a
shift of energy into the lower frequency fluctuations (<1 Hz) from
the intermediate ranges. (1 to 3 Hz). Corke et.al23,2% draw
attention to a strong tie between these 1low frequency, energy
containing eddies and the pressure spectra. They also state that the
wake Strouhal number also 1increases as turbulence increases,
reflecting the modulation of the shear layers separating from the
building by the upstream turbulence.
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4 Pressure coefficients

The general form of the pressure coefficient for a point on a building fis
defined by the equation (Lawson?26:-

Cp = _P-P(0) = f(L,H,WD,Re,M,St) (4.1)
0.5.p.v2

Where:- L is a characteristic horizontal dimension,

H is a characteristic vertical dimension,

WD is the wind approach angle relative to the axis of the building,
Re is the Reynolds number,

M 1s the Mach Number (U/U(sound)) and

St is the Strouhal Number (n.L/v)

M only becomes significant for windspeeds 1in excess of 50 m/s, i.e.
hurricanes, tornados and sonic booms, and can thus be safely ignored for
the present application. The Strouhal Number, St, is used in two contexts.

One for the wind approaching the building, where L = xLu and v is the

mean windspeed, yielding n, the frequency of the turbulence. For the
building wake, L 1is the buildings effective width and n is the frequency of
eddies shed by it.

Pressure coefficients may be defined for mean, peak and rms pressures. For
the mean and peak pressure, P(0) is usually the static pressure of the free
stream if the building were not there, or its nearest achievable equivalent
in the case of full scale measurements. For rms pressures, if the mean
pressure 1is used for P(0), we have the root mean square about the
mean, (sometimes written rmsm).

The particular combination of pressure measurement and reference wind is
determined by the purpose for which the data is required, and by the
practical 1imits of the method used to acquire the data. One is inevitably
faced with a compromise between the detail of the data required and the
universality of the pressure coefficients so derived.

4.1 Reference Wind

The choice of reference wind has varied widely. Each method has its
advantages and disadvantages. These are summarised below.
(see Fig.(4.1))

1) Windspeed at 10 metres.

a) Simultaneous hourly mean wind.
This has the advantage of being a figure readily available as a
standard meteorological measurement. It is independent of building
form, but also takes no account of local shelter on its value. In an
area where building heights are low, it can be quite useful.
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Fig.(4.1) Illustration of the choice of reference winds

1) 10m wind : a) Local, b) Remote or standard.
2) Roof ridge height. 3) Ceiling height.
4) Gradient height. 5) Local wind profile.

6) as 5 but with turbulence.

b) Meteorological standard windspeed for the site.
This is an hourly average windspeed which has a quoted probability of
being exceeded 1in any one year, measured at 10m over open flat level
ground in the vicinity of the buildings. Lawson26
This has the advantage of simplifying the statistical calculations for
extreme wind analysis. The frequencies associated with peak winds and
the hourly wind 1ie on either side of the spectral gap. Their
probabilities of occurrence are, therefore, independent.
Coupled with a similar probability distribution for the wind direction
this can be used when estimating the seasonal variation of energy loss
using a very simple model, but not {if any degree of detail is
required.

2) Windspeed at roof ridge height upstream.
This has the advantage of being independent of building form.
This is the value used in BS5925 and CP3 and most of the published
calculations for wind loading3s“.
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3) Wind at ceiling height 258
This is the reference level used by LBL, at the top of the heated
space. This has the advantage of representing the top of the zone
affected by stack action, and is independent of the external form of
the building.

4) Gradient wind.
This is the value recommended by the group at Sheffield University.
(Hussain, Lee, Soliman?7-3%) It has the advantage of being independent
of terrain, and 1s equivalent to the free stream velocity in a wind
tunnel. A reasonable estimate of the value of this windspeed can be
arrived at in the field using published Meteorological data. The main
disadvantage is one of scaling. To model this situation accurately,
one has to reproduce the whole of the boundary Tlayer in the wind
tunnel rather than the lower part which is more frequently the case.
This places severe limitations on the building scale which can be
accommodated, and thus the detail of the pressure distribution which
can be modelled.

5) Local wind profile.
Where this can be determined it is useful, since then, local pressure
coefficients can be used. These are then independent of local shelter
and terrain. This considerably simplifies the wind tunnel modelling
requirements. One needs to reproduce the turbulence structure and
intensity, but can dispense with accurate modelling of local shelter,
a distinct advantage since the accurate scaling of both at once 1is
impossible. If one is using the mean local pressure coefficient for a
facade, the corresponding reference wind is the mean wind acting on
that facade, averaged over the area of the facade. It follows that
the resulting coefficient may exceed 1.0 1in places. This is the
approach used at VPISU (Tieleman, Akins) and Colorado (Cermak,
Peterka)35-40,

A disadvantage common to the above 1is that the effects of the
variation of turbulence for different boundary layer structures cannot
be accommodated.

6) A modified 1local reference pressure of the form:-

q = .(U+n.u)? (4.2)
H

has been suggested by Corke et.al.23,2%. The use of the combination
of the mean and rms velocities for the present purpose is new, but has
been used extensively in wind environment studies, relating to flow
around buildings 1in urban areas for pedestrian comfort, and in the
assessment of the effectiveness of windbreaks.

For the upwind face, a value of n=1 causes the vertical profiles of
the mean pressure coefficients to collapse towards a single curve. A
value of n=4 does the same for the RMS pressure coefficient. n=0
gives the best fit for the roof and surfaces other than the windward
face in the case of wind blowing normal to one of the facades,
otherwise the upwind values apply. (see Figs.(4.2), (4.3))
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The degree of collapse for the Cp profiles for each facade varies
somewhat, due to the differing degrees of influence of the upwind
turbulence on the pressure fluctuations. In all cases, however, there
was a considerable improvement over the case of uncorrected local
pressure coefficients.

This system has the advantage of considerably simplifying the final form
of the pressure coefficients, but has the disadvantage of requiring not
only the local mean wind velocity profile but also the rms component or
the turbulent intensity as input.

4.2 Fluctuating pressures

A number of workers in air infiltration have turned their attention to
the contribution arising from fluctuating flow. (van der Held“!,
Handal“, Etheridge and Alexander“?, Potter“3§

The input requirements of an air infiltration model in this case include
a knowledge of the rms. value of the pressure difference across the
facade of the building for each leakage point, i.e. the local mean and
rms. pressure coefficients and the internal pressure coefficient for
the building at that position. Flow reversal can take place when the
mean pressure difference is less than about 3 x (rms pressure
difference). (Etheridge and Alexander“2?)

In determining the overall flow of fresh air into a building, the
combined effects of the non-steady contributions must be considered for
all leakage points at any one epoch, since these will influence the
variations of the instantaneous value of the internal pressure
coefficient. It is 1important, therefore, to establish the degree of
correlation between the fluctuating pressures at these loci. (Handal4,
Surry, Kitchen and Davenport®+)

To that end one might also use the theory of acoustic circuits as used
by Graham“> and Card et.al.46,47,

The time scale for the transmission of a pressure signal through a crack
is small compared with that for the passage of the larger scale eddies
in the wind which contain most of the energy. A reasonable analogy here
is the pressure signal transmission through a 1.35mm diameter pvc tube
described by Irwin, Cooper and Girard“8. For a 10ft (3.05m) length, the
delay time was about 10ms., the shorter the tube, the smaller the delay,
whereas the turbulence time scale is between 5s and 5 min. The
turbulence time scale is also Tong with respect to the time required for
air to flow through most cracks, although where a cavity or shaft in a
large building is 1involved, this may not be the case. Gumley49,50
performed a similar set of calculations for tubes connected to a
manifold, including the case of a fluctuating pressure signal
superimposed on a steady signal. His calculations may well provide a
basis for including fluctuating flow explicitly 1in air infiltration
calculations.

These conditions imply that it should be possible to arrive at an answer
based on the turbulent intensity of the wind and the geometry of the
building. Preliminary model studies along these 1ines have been carried
out by Holdg >land Corke et. al1.23,24 (see para.(4.1)). The Ilatter
propose 1{ncluding the rms component of velocity explicitly in the
determination of the mean and rms local pressure coefficients.

The degree of correlation will depend on the relative scales of the
energy containing turbulent eddies and of the building itself. In
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general, the turbulence scale is usually much larger. One can therefore
consider the building to be experiencing a wind field of near uniform
structure but with varying strength. The pressure differences acting on
the windward and leeward faces arising from eddies in the wind will
therefore be well correlated. Those arising from the eddies generated
by the building itself cannot be expected to be correlated, although it
should be possible to estimate their frequency based on the appropriate
Strouhal Number. (see para.(4.0))

Model studies of rms pressure coefficients are to be found in
Table (A2.1), full scale measurements in Table (Al.1), and model studies
of real buildings 1n Table (A2.2).(also see Chapter 6)

Until now it has been assumed by most workers that the fluctuations in
the windfield, and of the pressure field have a Gaussian distribution.
There is a growing body of evidence that this 1is not the case.
Dalgliesh®2 "and Peterka and Cermak>3 have described strong non-Gaussian
behaviour in regions of separated flow and on the leeward walls 1in the
case of high rise buildings. The pressures on the windward walls was
observed as close to Gaussian.

In the case of low rise buildings, even the windward pressures show
non-Gaussian characteristics. (HolmesS*)

Holmes found that for small values of the turbulent intensity (Iu), the
distribution approached the Gaussian, but that for Iu of the order of

20% to 30% , the distribution is significantly skewed.

He gave a set of equations in terms of the turbulent intensity which can
be used to estimate the proportion of the time for which the flow

reversal condition is satisfied, and thus the non-steady part of the

contribution to the infiltration.

It should not be forgotten that the wind varies not only in magnitude,
but also in direction. This problem has been considered by Hoxey>> who
fitted a quadratic function to the angular variation of the pressure
coefficient over a range +/- 20 degrees, using this to calculate a
probability distribution for the mean pressure coefficient at a
particular location on the surface of a greenhouse.
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5 Survey of pressure measurements in the real wind

Full scale pressure measurements on buildings and measurements on model
buildings in the real wind are 1listed 1in Tables (Al.1) and (Al.2)
respectively. Field measurements of flow around windbreaks and buildings
are listed in Table (Al.3). (see Appendix 1)

Much of the information was extracted from Ref.(56). A1l the information
is presented 1in a similar format to that of Ref.(56). Entries are listed
in order of building height. Information given includes the names of the
investigators, the organisations to which they were affiliated at the time
of the investigation, the 1location, type, size and exposure of the
building, and details of the tests which were carried out.
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6 Wind tunnel techniques

6.1 General

Wind tunnel studies are used when it 1is not practical to study a
building at full scale, either because it is too difficult to instrument
or because it does not yet exist. Some studies have been undertaken of
models of existing buildings, usually relating to problems with cladding
failure etc. but a few have been carried out for the specific purpose
of comparing wind tunnel results with those from full scale
measurements.

Such  wind tunnel studies have several distinct advantages. In
particular, the conditions for the tests are both consistent and readily
reproducible when required,- a state of affairs rarely encountered in
the real wind! Systematic investigations can be carried out and
critical parameters identified.

The conditions which must be fulfilled for the wind tunnel flow to match
the full scale atmospheric boundary layer are given in Table (6.1).

If a1l of these conditions could be met, then all features of the flow
in the atmosphere could be matched. Unfortunately this is not possible.
The appropriate choice of scale is very important. The requirements for
optimum modelling of flow over gross terrain features differ greatly
from those for modelling flow around an individual building. In the
former case scales of the order of 1:1000 or greater are used. In the
latter, for work involving fluctuating flows a scale of about 1:250 is
more appropriate, while for flow around building detail, such as
overhanging eaves, parapets, balconies, mullions, etc.,1:50 or less may
be necessary to satisfy condition (7). This arises from the depth of
the 1local boundary 1layer on the wind tunnel model being larger in
proportion to the overall size of the model than that on the building in
the real wind.

The longitudinal scale of turbulence is also difficult to match at model
scale, being much larger relative to the size of the building in real
1ife than can be reproduced readily in the wind tunnel.

Most wind tunnels are designed to simulate a neutrally stratified,
adiabatic boundary layer, typical of high wind speeds. These conditions
are best suited to the study of wind pressure on buildings from the
viewpoint of wind loading. Wind pressures for ventilation span the full
range of conditions from light varijable winds to the extreme conditions
which are usually studied.

Little work has been done which ventures into these lower speed regions.
What there is, (Katsura®7,) suggests that the pressure coefficients are
reduced at lower windspeeds. This indicates the need for further work
to be done, specifically aimed at studying conditions more commonly
encountered in nature. (see Appendix 2)

Some detailed parametric wind tunnel studies (A.HuntS8, Akins35) offer
some indications of the determining factors for the pressure
distribution.

Studies comparing full scale and wind tunnel measurements
(Tieleman, Akins, and Sparks38, HoldgS!) describe the conditions under
which measurements at model and full scale agree.
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6.2 Effects of building form on modelling requirements

The pressure pattern experienced i{s governed by the separation and
reattachment of the boundary layer on the building surface. This is
strongly determined by the form of the building. In the case of the
basic rectangular block, and other shapes where the surfaces are bounded
by sharp edges, flow separation is forced by the building geometry.
(see Ch.2)

Provided that the l1inear and velocity scales are matched and the
longitudinal turbulence scale,L , is sufficiently large, this

class of building shapes is easily modelled.

Where reattachment takes place, the size of the reattachment bubble 1is
dependent on the Reynolds Number. This can cause a distortion of the
flow at model scale relative to that at full scale.
(Macha, Sevier and Bertin59)

Where the surface of a building is curved the position at which the
boundary layer trips is determined by the surface roughness.

For the flow round the model counterpart of such a building to behave in
the same way as its full scale prototype, it is necessary to roughen the
surface of the model, the amplitude of the roughness elements being
sufficient to penetrate the 1laminar boundary layer on its surface, a
similar consideration to that applying when mode]]in? small scale detail
on the surface of a building such as balconies, mullions and parapets.

6.3 Effect of boundary layer structure

Wind tunnel tests cannot be used to simulate flows with a substantial
component of rotation in the horizontal plane. It is not possible to
model, for example, the variation of wind direction with height (Ekman
spiral) by this method. This has been assumed to be of negligible
effect but for the very tall structures now in existence, this may not
be the case. For this, the answer may lie with rotating flow
experiments such as those of Caldwell and van Atta®0,6l (see also
Cermak 62)

Cases of extreme vorticity such as tornados also require this kind of
approach.

Stratified flow around 1larger scale topographic features has been
modelled by towing an inverted version of the structure through a water
tank, the density variation being produced by doping with salt. Gross
flow is well reproduced by this method, but turbulence is not well
represented.

Flow over complex topography is also a field where future work is
required. Some studies of polutant dispersal in a simple model valley
in a turbulent boundary layer were reported by Fackrell and Robins of
CEGB Marchwood Laboratories®3.

This problem has been tackled more often by numerical modelling than by
actual physical modelling. (see Chapter 8, Table 8.1b and Chapter 9).
Radiative exchange has not been considered as yet, although this will
become necessary in order to understand conditions of valley flow.
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The effects of latent heat release and precipitation do not 1lend
themselves to physical modelling, other than for the extreme case of
wind driven rain. Such studies have been undertaken at the Building
Research Institute, Tokyo.

There are other non standard profiles which need investigating, e.g.
the low level jet, often observed 1in areas of extensive plains, such as
the Great Plains in the USA and the Great European Plain (north
Germany). This field is characterised by high velocities, relatively
low turbulence, occurring mainly at night. (Roth&"%)

Wind tunnel studies of flow 1in the urban environment have Tlargely
concentrated on problems of pedestrian comfort and damage to nearby
buildings. From the point of view of air infiltration studies, a more
useful subject area would be the effects of a nearby large building on
the pressures experienced by a smaller building 1lying in {its wake.
(Gerry and Harvey®5S5, Pfaff20, van Dalen?!) (see Table (A2.le))

A list of studies on wind flow around buildings can be found in
Table (A2.1g).

6.4 Comparison of Wind Tunnel Performance

The performance of wind tunnels in comparison with each other is
described in Melbourne®®. This paper describes a series of studies in
which tests were carried out for a standard tall building model, the
specification of which was prepared by Wardlaw and Moss259 for the
Commonwealth Advisory Aeronautical Research Council (CAARC).

Surface pressures and dynamic response were measured at 6
establishments:

1) University of Western Ontario (J.D.Holmes)
2) University of Bristol, England (T.V.Lawson)
3) Monash University, Australia (W.H.Melbourne)

4) National Physical Laboratory, England (D.E.Walshe, J.A.B.Wills,
P.Jones)

5) National Aeronautical Establishment, Canada (K.R.Cooper,
R.L.Wardlow)

6) City University, England (D.M.Sykes)
The following parameters were compared :-

1) boundary layer characteristics,
2) mean pressure coefficients,
3) standard deviation (RMS) pressure coefficients,
4; pressure spectra,
probability distributions of pressure measurements on the model
surface,
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6; displacement of the top of the model,
7) effect of structural damping, and
8) base overturning moment.

Small trends were observable in respect of pressure measurements,
attributable to differences in 1longitudinal velocity spectrum and
requirement for blockage correction. There were no obvious trends 1in
the dynamic response measurements where most of the data compared to
within 15%.

6.5 A Survey of Wind Tunnel studies

(see Appendix 2)

Wind tunnel studies of real buildings are listed in Table (A2.1). These
include some model studies carried out for wind loading purposes prior
to construction. In some cases full scale pressure measurements are
available. In these cases the number of pressure taps at model and full
scale is quoted.

Detailed studies of general forms, such as rectangular blocks, and of
simple building shapes, are listed in Table (A2.2).

Data from the studies of Bowen®7, and Akins, Peterka and Cermak36,37
(based on Akins35) on rectangular blocks have been analysed at the Air
Infiltration Centre for their dependence on side ratio, wind angle and
shelter in order to find a way of presenting the results of such studies
in a more “computer-friendly" form. The results of this analysis are
given in Chapter 7.




7 Analysis of wind tunnel results

Until now, apart from a few isolated cases (e.g. Shawt8), 1little attempt
has been made to present wind pressure results in analytical form, suitable
for dincorporation into an algorithm. This Chapter describes the author's
application of Harmonic analysis to wind pressure coefficients from wind
tunnel measurements on simple rectangular building models. These pressure
coefficients were analysed as a function of wind angle, building shape and
shelter. It 1s shown that, where wind tunnel results are mutually
consistent, the equations derived from one or more data sets can be used to
predict the pressure coefficient in other data sets to a level of accuracy
acceptable for infiltration calculations.

7.1 Wind direction and Shelter - Harmonic Analysis

In general, for any point on any building, as the wind direction rotates
through 360deg, the pressure coefficient associated with that point will
describe a closed curve between + m and -m. Formally this can be
represented by a Fourier series of the form:

Cp(i) = a(0) + 1 a(i).cos(i.e) + r b(f).sin(i.08) (7.1)

(Stephenson69)

This approach has been used by Shaw68 to describe the pressure
difference coefficients for full scale measurements on two schools. In
principle the method can be applied to a building of any shape, and to
any of the forms of pressure coefficient.

If the building 1s symmetrical, the mean value for a facade and the
central 1ine value can be represented by a Fourier cosine series.

This proposition was tested at the Air Infiltration Centre, using data
extracted from Bowen67 and Akins, Peterka, & Cermak3’. The Bowen data
consists of wind tunnel measurements on a rectangular test element of
side ratio 3:2 and H/h = 1:1,2:1,4:1 & 6:1, where h is the height of the
blocks 1in a staggered array surrounding the test block. This was the
?ourc% ?ata set for the NRC pressure coefficients used 1in Chapter 1.
Shaw
The data from Akins et.al consists of mean pressure coefficients for
each facade, averaged over aspect ratio (H/W) and boundary 1layer
velocity distribution, for side ratios (L/W) of 1:1,2:1 & 4:l1.
In both cases the data sets generated were a composite of measurements
from equivalent points on the various faces of the test model,
exploiting the symmetry of the experimental system to get the full range
of wind directions.
A General Linear Interactive Model (GLIM) program was used to fit the
Fourier series to the data sets. The results are shown 1in Figs.(7.1)
to (7.6). (Baker and Nelder’?)
Data were analysed for pressure coefficients using a roof 1level
reference wind (="roof level pressure coefficients"), and for "local
pressure coefficients", referenced to the 1local wind profile. The
"local mean pressure coefficient” refers to the area mean value of the
local pressure coefficient for the facade.
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The variation of the shapes of the curves with side ratio and shelter
was investigated by plotting the coefficients of the best fit Fourier
cosine series with side ratio for the Akins data, and with H/h for the
Bowen data. (see Fig. (7.4)

Since cos(1.8 ) is always <1, any coefficient <0.1 cannot contribute
more than 10%¥ to the final figure. The results indicate that terms
higher than the third are of marginal importance.

a(0) is seen to decrease steadily from -0.12 to -0.24 as the side ratio
varifes from 1/4 to 4 (side ratio S = D/W : W = width of facade
containing the sampling point, D = 1length of side wall perpendicular to
the sample wall). There appears to be 1ittle variation with H/h.

a(l) decreases with S from 0.61 to 0.4 and 1increases sharply as H/h
increases from 1 to 6.

a(2) increases with S from 0.175 to 0.47 and increases with increasing
H/h, but not as strongly as a(l).

a(35and a(5) only maEe a significant contribution for S > 3. a(4) only
features for 0.7< S<3. These coefficients do not appear to vary
significantly with H/h. They have little effect on the general shape of
the curve, but do refine the fit around the extreme values.

The effect of displacement from the centre of the facade was

investigated using a set of data from Bowen corresponding to

2/H = 0.85, H/h = 6,5 = 2/3 for all wind angles. H is the height of the

building model and z is the height of the pressure tap above the base.

For each wind angle, the local pressure coefficient was fitted to a
1inear equation of the form:

Cp = A + B(X/W) (7.2)
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Fig.(7.5) Fourier analysis of the horizontal pressure distribution
across a facade with wind angle. (see eqn. 7.2)
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where X is the displacement from the centre 1ine (-0.5 ¢ X < 0.5).

A and B were then analysed for dependence on wind angle. see Fig. (7.5)
It became apparent that 'A' represents a cosine series with coefficients
similar to those for the mean facade allowing for the variations with
L/W and H/h. B was found to represent a sine series, dominated by
b(3),and adequately represented by terms from b(2) to b(6).
(see Table (7.3))

The mean pressure coefficients for the roof are illustrated in
Fig (7.6). It will be noted that these are the same for both the local
and roof level pressure coefficients. It should be mentioned that this
is the case only for a flat roofed building, since only then is the roof
level velocity the same as the mean velocity for the roof surface.

A further set of data was used to look at the effect of departure from
the rectangular block shape used in the original analysis.

This data 1s from "Wind Tunnel Investigation of CARE INC. Single Family
Dwelling" , Tieleman H.W. and Gold R.R.39

The test building is illustrated in Fig. (7.7)
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Although the modelling was at 1/30th scale, it was felt that 1t would
afford a chance to examine the gross effect of the shape variation. Two
representative nodes were chosen, one on the centre 1ine of the vertical
end wall, and one as close to the centre 1ine of the curved side wall as
possible. The results were plotted in Figs. (7.8a) and (7.8b). It can
be seen that for the flat end, the mean pressure coefficient follows a
similar pattern to that for a rectangular block building of almost the
same ground plan, with reduced depth to width ratio. The response of
the point on the curved side, however, is much more exaggerated.

A subsequent analysis of the data revealed that the a?g),a(l) and a(2)
components of the cosine series were consistent with those of a buildin

of much reduced depth. This is particularly the case for the a(l?
component. The cosine curve corresponding to a depth to width ratio of
0.25:1 is plotted for comparison. The true ratio at ground level being
0.8:1, and at the height of the node, 0.755:1.

This reflects the difference in the shape of the wake, and the
importance of salient edges in determining the response of the pressure
distribution to wind angle.

This would suggest a possible direction for future work.
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7.2 Numerical representation of pressure coefficients

Further application of the GLIM program showed that it is possible to
represent the coefficients a(1) of equatfon (7.1) by a logarithmic
series of the form:-

a(1) = c(0)+c(1)In(S)+c(2)(In($))%+  +c(§)(In(s))d (7.3)

Where S = depth/width.

The values of the ¢ coefficients are given in Table (7.1) for the local
pressure coefficients and Table (7.2) for the roof 1level pressure
coefficients.

Table (7.1) Coefficients of the log series representation of
a(i) values - Mean local pressure coefficients.

a(i) 3= 0 1 2 3 4 5 6
0 -0.2418 -0.07016 -0.1225 0.0 +0.0441 0.0 0.0
1 +0.9358 -0.1496 0.0 0.0 0.0 0.0 0.0
2 +0.6293 +0.2420 +0.03818 -0.02440 -0.02684 0.0 0.0
3 -0.06432 +0.1207 +0.05121 0.0 0.0 0.0 0.0
4 -0.1371 -0.0622 +0.06033 +0.01826 0.0 0.0 0.0
5 -0.01546 -0.09586 -0.08173 0.0 +0.02441 0.0 0.0
6 +0.05484 0.0 -0.05104 +0.0973 +0.01203 -0.05505 0.0
7 40.01092 0.0 -0.0316 +0.0145 +0.01844 0.0 0.0

Table (7.2) Coefficients of the log series representation of
a(i) values - Mean roof-level pressure coefficients.

a(i) j= 0 1 2 3 4 5 6

0 -0.1532 -0.04332 -0.05981 0.0 +0.02435 0.0 0.0
1 +0.5031 -0.08585 0.0 0.0 +0.1564 0.0 -0.08276
2 +0.3689 +0.1479 -0.02574  -0.02252 0.0 0.0 0.0
3 -0.03146 +0.05712 -0.01061 +0.007807 +0.01978 0.0 0.0
4 -0.07928 -0.03031 +0.05996 +0.01161 -0.01460 0.0 0.0
5 -0.08458 -0.04409 -0.01777 -0.00624 0.0 0.0 0.0
6 +0.02826 +0.03123 -0.01961 -0.01589 0.0 0.0 0.0
7 +0.007429 0.0 -0.02585 +0.006443 +0.01425 0.0 0.0

These coefficients closely reproduce the data in Figs.(7.3) and (7.2).




The values for the a(i) and b(i) coefficients are given in Table (7.3)
for H/h = 6, S =2/3, z/H = 0.85.

This is the level corresponding approximately to the maximum positive
pressure on the windward face, and thus for which the amplitude of the

distortions caused by displacement from the centre 1line {is also a
max imum.

The procedure was to fit the values for various X/W to a straight 1line
for each angle:-

CP(q) = (A + BIX/W)(y) (7.4)
Where: -

A= a(0) + tza(i).cos(i.9) (7.5)

Be= b(i).sin(i.9) (7.6)

For comparison, the table also includes the corresponding coefficients
for the whole face mean Cp and the local mean Cp for z/H = 0.850.
The effects of sheltering blocks can be expressed in the form :-

D = (Cp(0)-Cp(sheltered))

= £(T,12,13,5.7,5.72,52.7) (7.7)
Where S {is the depth to width ratio as before and T is given by:-

T==tanh( h ) 7.8
TCHY (7:8)

The deficit can be expressed by such a series for each of the Fourier
coefficients a(i). The coefficients for equation 7.7 for i= 0 to 7 are
given in Table (7.4).

The local pressure coefficients for zero wind angle for various S are
plotted against z/H (Fig. 7.10). For z/H>0.1, the curves collapse
almost to a straight line. The best straight line fit is :-

Cp(0) = 1.617 - 0.8552(z/H) (7.9)

The mean roof reference pressure coefficients and the corresponding
centre 1line values from Bowen®7 (depth/width = 2/3) have been plotted
for shelter conditions from H/h =1 to H/h = 6. (Fig (7.9)). The
results all 1ie approximately on a straight line.
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Table (7.3) a(i) and b(i) coefficients for z/H=0.85, S=2/3.

i/j O 1 2 3 4 5 6 7

a(f1) -0.1055 +0.5029 +0.3379 -0.01625 -0.09895 -0.02349 0.0 +0.01509
b(J3) 0.0 0.0 +0.2370 +0.4761 +0.2029 -0.1679 -0.1316 0.0

a(f)r -0.1505 +0.4480 +0.255 -0.055 -0.037 +0.013 0.0 0.0
(a11)
a(i)r -0.0896 +0.5262 +0.3469 -0.01467 -0.09058 -0.008457 +0.01833 0.0
(1oc)

Key:- a(1)r (al1) = coefficients for the whole facade mean Cp.
a{1)r (loc) = local mean Cp fpr z/H=0.850

Fitted line s 0.92 Cp(central) -0.0345

R H/D
o a =Gl
. + = 4.1
x = 2.1
wd o= 11l

0.15
i A

Cp(mean>
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Fig.(7.9) Plot of mean Cp against centre line Cp for various
z/H, H/h and wind angle for face A.(see Fig.(7.4))
(data from Bowent7)




Table (7.4) Coefficients of the tanh series representation of D values.

i C T T¢ 73 S.T s.T¢  sC.T
0 0.364 0.3126 -0.9310 0.7249 0.0 -0.1137 0.0
1  0.955 0.5993 0.0 0.5177  0.2157 -0.8841 0.0
2 100.(as) 0.0 1973.0 0.0 44..06 -3596.0 0.0
3 3.80 0.0 -3.391  11.72 0.0 0.0 0.1459
4  0.640 0.0 -0.6743  0.5268 0.0 0.1067 0.0
5 1.050 0.0725 0.0 0.04232 -0.07704 0.0 0.0
6 10.0 0.5564 0.0 -87.23 -0.6760 11.98 0.0
7 1.0 0.0 0.0 0.0 0.0 0.0 0.0

(as) = asymptote solution.

These coefficients match the data in Fig.(7.9) to within 10%, and mostly

within 5%.

Mean 0° incidence
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017 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 16 1.7 1.8 1.9 2.0

Cp (local)

Fig.(7.10) Local pressure coefficients for zero wind angle and
various S plotted against z/H.

Equation 7.4 can be used for any wind direction for which the wind is
incident on the facade, i.e. -90 to +90 degrees and represents a
scaling factor taking into account the variation of wind speed with
height. This is due to the fact that the centre Tine pressures vary
1ittle with wind angle over the central part of this range where the
scaling factor {s important.
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A similar exercise could be carried out for Cp(90) and Cp(180). For
this range of wind directions, however, the flow pattern is dominated by
the building and 1{s largely independent of the oncoming wind profile,
and a scaling factor may be therefore unnecessary.

for S = 2/3: Cp(mean) & 0.92 Cp(central) -0.03 (7.10)

for S = 3/2: Cp(mean) = 0.97 Cp(central) (7.11)

for the flat roof:

Cp(mean) = -0.3612 + 0.4141 Cp(central) (7.12)

7.3 Case studies

7.3.1 Aylesbury test house

Wind pressure data has been gathered by Eaton and Mayne!S of the
Building Research Establishment (England) for a test building near
Aylesbury. The mean roof level Cp has been "calculated for the
Aylesbury Test House data for points near the centre line of the East
and West facades. (3EW3,5EW3,3WW3,5WW3). (see Fig. (7.11))

N =0
[ 1] -0

NP N e oW
"D o7 0H oW

South wall

e e Biw L ]
12 3 4
e L L )
12 3 a4
asw

Fig.(7.11) Aylesbury Test House - location of pressure taps

(From Eaton and Maynel> reproduced by permission of the Controller,
HMSO Crown Copyright)
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Fig.(7.12a) Measured vs. calculated pressure coefficients for
the Aylesbury test house.
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Fig.(7.12b) Measured and calculated pressure coefficients plotted
against wind angle for the Aylesbury test house.

The calculated values, using the coefficients derived from Table (7.2),
are plotted with the data in Fig.(7.12a) against each other and both

against relative wind angle in

It can be seen that there is

Fig.(7.12b).

a considerable

scatter of the data

is

a result of the unsteady nature of the real wind

points. This

under the strong wind conditions when the field measurements were

made.
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7.3.2 CAARC tall building model

The method has been tested against the CAARC data from Melbourne6é.
Here the local pressure coefficients were used. The data to be
matched was the roof level Cp on the centre line for z/H = 2/3.

The data for the building is:-
= 183m (600'), L = 45.72m (150'), W = 30.48m (100')

6 < H/h <15.25 for the 6 wind tunnel investigations, h = roughness
block height.

S =2/3 for the centre line of the wider face.
The power law exponent for the velocity gradient 1s given as 0.26.
Therefore:-

V(2)/V(H) = (2/H)0-26 (7.13)

Cp(r) 2/3 § f ;} ECp [2H/3]J <Cp(2)>

= (273)9-32 (1.047/1.110).<Cp(2)> (7.14)

(From equations (7.9) and (7.13) and Table (7.1) for the case of 00
wind angle).

= 0.7639 < Cp(2) > (7.15)

The coefficients a(i), calculated using the coefficients from
Table (7.1) are displayed in Table (7.5).

Table (7.5)
Mean Tocal Cp's Roof level Cp's

(=<Cp(2)>) (H/h=6)
a£0§= -0.232 -0.1505
a(l)= +0.996 +0.448
a§2;= +0.538 +0.255
a(3)= -0.105 -0.055
a§4;- -0.103 -0.037
a(s)= +0.0106 +0.013
a(6)= +0.041 0.0
a(7)= +0.005 0.0
b(i)= 0.0 0.0
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The results are plotted against the CAARC data in Fig (7.13). It can
be seen that for the regions where equation (7.9) applies (-90 to +90
degrees), the fit is excellent.

94 DO=City ® = NPL
- O = Bristol — = 0,7639xCp(loc) z/H=2/3
o4 4 = Monesh ---~ = Cp(roof)
- + = NREC@)

{4 X =NREW

o

o~

T T L T T T T T T LY T T L L T L L L 1

-180 -140 -100 -60 -20 20 60 100 140 180
Hind Angle

Fig.(7.13) Measured and calculated pressure coefficients plotted
against wind angle for the CAARC Standard Tall Building
Model.

The mean roof level Cp for the wider facade is also plotted, using
coefficients from Table (7.2). It can be seen that this gives a
better fit for wind angles greater than 100 degrees.

It should be noted that the mean local <Cp(z)> used above contains no
information about the distribution of pressure on the facade, and so
cannot be expected to be accurate when the pressure gradient is
changing most rapidly.
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7.3.3 Comparison with full scale measurements on a high rise
building

Results from full scale and model measurements reported by
Dalgliesh52 for a Toronto office building also resemble the Fourier
series solution. The mean and rms about the mean values were plotted
against wind angle for the building. A sample of his results is
given in Fig. (7.14). An interesting feature is that the principal
maxima of the rms plot appear to coincide with angles where the mean
pressure coefficient 1s changing most rapidly. This suggests a
possibility of finding a prediction function for the rmsm based on
the derivative of that for the mean Cp with respect to wind angle.

S S—T1T—T7T T T T T T T T T T

SENSOR 312
0.4 HEIGHT 0.84H D 1

W17 T T 7T T T T T 1

0.5

| I N S |

JTTTTTTTTTTT

MEAN PRESSURE COEFF.
LLrde gt rrld
RMSM PRESSURE COEFF,

| I I U U I S e | ) |

o E - 0
WEST NORTH EAST SOUTH WEST WEST NORTH EAST SOUTH WwWEST
WIND DIRECTION WIND DIRECTION
North wall tap 10.7 m from N.E. corner, 50th floor.

Fig.(7.14) Example of full scale measurements on a 57 storey office
tower in Toronto. (from Dalgliesh>? )

7.4 Notes on the use of Fourier analysis

It should be noted that, when performing a harmonic analysis, the
maximum order that can be derived is (k-2)/2 where k is the number of
equally spaced data ordinates (y(i)). e.g. if the pressure coefficient
is given for wind angles every 30 degrees, k = 12 and n(max)=5, if the
interval is 15 degrees, k=24 and n(max)=11.

k-1

a(0) = (1/k) £ y{(m) (7.16a)
i
k-

a(i) = (2/k) 20 y(m).cos(2.m.i. v /k) (7.16b)
m:
k-1

b(1) = (2/k) ZO y(m).sin(2.m. 4. 7 /k) (7.16¢)
m:

Since the above study indicates coefficients of significant size up to
n==6 for a simple rectangular bu11d1ng, k must be at 1least 14,
corresponding to an angular interval of 25.7 degrees. For more complex
situations the solution may involve higher order terms and, thus, more
closely spaced data points. If one attempts to fit higher order
coefficients than is appropriate for the number of data points, aliasing

can occur.
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If the data points are not equally spaced, one can use the
aforementioned GLIM method to obtain a rms best fit. The 1imit on the
number of points required still holds.

7.5 Summary

The above examples demonstrate that the method of Harmonic Analysis can
be applied successfully 1in the case of simple rectangular blocks and
other simple shapes. The results of Shaw®8 show that it can be applied
to real buildings of irregular form in the real environment (up to 3rd
order, using 8 wind directions). The relationships derived 1in this
chapter should be adequate for the calculation of whole facade mean
pressure coefficients referenced to roof level or local winds, and
should therefore be a useful tool for the prediction of wind induced air
infiltration in buildings.
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8 Theoretical modelling

8.1 Modelling of the pressure distribution

Work in this
listed in Table (8.1la).

Purely theoretical models have,
consideratifon of the 2D case,
transformation techniques. (e.q.
Kobayashi’3),
Al
separation.

area appears to be rather sparse.

up to
which

or to numerical modelling.
suffer from the disadvantage that they cannot cope with flow

Such as there is, is

now, been confined to

is susceptible to treatment by

Parkinson and Jandali’?,
(Hunt7%)

Yih71,

Empirical methods are described by Hoxeys'5 who uses a quadratic function
of wind angle (see Chapter 4), Shawt® and the author (see Chapter 7),

using Fourier series.

8.2 Modelling of the wind profile

A selection of papers on numerical modelling of the atmospheric boundary
layer over complex terrain are listed in Table (8.1b) (see Chapter 9)

Table (8.1)

a) Pressure distribution
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Investigator(s) Affiliation/ Method Used Case Studied
Organisation .
emenz P Z2-D viscous, Taminar Pressure distribution on the windward face.
Homan stagnation flow. Solves for uniform approach flow and 2-D or
(Y1h 71) axisymmetric bodies.
G.V.Parkinson -—-- Potential flow theory 2-D incompressible potential flow external
T.Jandal to a symmetric bluff body and 1ts wake.
(72) Requires the location of separation points
on the bluff body and base pressures in the
separated regions. Useful only for 2-D bodies
since uses transformation methods for the
solution.
ShoJ1 Structural 2-D potential Pressure distribution on the windward faces of
Kobayashi Mechanics theory a 2-D rectangular cylinder tn untform flow.
(73) Inst. of Used transformation methods to assess
Construction the variation across the facades for
Technology different wind angles.
Kajima Constr.
Co.Ltd.
Japan
J.C.R.Hunt Univ. of rapid distortion Predicts flow around a 2-D body in uniform flow
74) Cambridge theory with {sotropic turbulence. Predicts mean and
fluctuating surface pressures for regions where
there 1s no flow separation.
J.D.Holmes James Cook Computer simulation Mean and r.m.s internal pressure coefficients
Univ. of model = damped (both are monotonic functions of the ratio
N.Queensland Helmholz resonator of windward to leeward opening areas.)
Townsville {centra) difference) Constders inertia and response time effects
Australia usad simulated for a step change in pressure, as in
external pressure the case of window failure (or door
record as driving opening).
function.




b) Studies

of the wind field - complex terrain

erman et al. (83)
ntonia and Luxton (B84, 85)

uer (86)
lavert (87)
unt (88)

Investigator(s) AffiTiation/ Method Used Tase Studied
Organisation
D.M.Deaves Cranfield Numerical model Neutrally stratified B-L passing over a 2-0 hill
(76) Inst. of Tech. or embankment. Looks at the speed up ratio.
Compares with full scale measurments at Brent
Knoll and Black Mountain (Canberra,
Australia
The model can be adapted to arbitrary shapes.
P A'T;yié;. Atmos. Environ. Numerical ﬁé&éii%ﬁé ..... ﬁé&e1s flow over 2-D ridges w1th a c;;;ﬁé';&d;;é&
(77 Service. profile. Neutrally stratified A.B.L
Downsv iew,
Ontario
Canada
ﬁ.j.ﬁéééﬁ ........ ﬁéi:b%%iéé" ..... ﬁﬁﬁé;ié;i'ﬁéééiiiﬁé ..... ﬁié;'éQé;';;&éé; ................................. .
R.I.Sykes Bracknell
(78) Berks. U.K.
p §.&;éi;éﬁ ..... i 6f ......... ﬁﬁﬁ;};é;i'Qéééiiiﬁé.. 'ﬁié;.égé;';.iéQ.ﬁiii: ...................... vecesed
gicik.Hunt Cambridge Including turbulence.
9
T.kubo Kanazawa Inst.  Interpolation method  Models wind field over complex terrain based on |
of Technology a small number of observatfions.
I.Hayakawa Tokyo Inst. of
Technology
Y.Isobe Regnl.Planning
Team. Inc.
(80) Japan
Y.0hishi hiééé&'xé&;& """ Numerica) model1ing  Uses a modified potential flow model to predict |
(81) the mean wind field over complex terrain.
K.Shiozawa Haseda Univ. ’
-1. Okamoto Indust1.Polln.
Control Assn.
of Japan
Add1tiona) References
Yocke et.al (82)
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9 The Wind Field

In order to use the pressure coefficients to generate surface pressures, it

is necessary to provide an adequate description of the local windfield.

The degree of detail required will depend on the choice of reference wind.
This part of the report includes some of the more commonly used

descriptions of the planetary boundary layer, and discusses some of the

factors which affect the velocity structure on a local scale.

There are two basic levels of information.

1) Single point reference winds, such as Vg, V(10m), roof level or ceiling
level reference winds, and,

2) Multi-point reference winds, i.e. mean and r.m.s velocity profiles.
Single point reference winds may be derived by:-
a) direct measurement,

b) reference to standard data, e.g. from BS5925",
U(z)/Um = k22 (9.1)

where Um is the average 10m windspeed for open country in the region of the
building.

c) reference to a nearby site, e.g. from Sherman and Grimsrud8°,

v ey, [o‘(n/m)Y]r (9.2)
[a'(H'/10)" ]

where the primed quantities refer to the wind measurement point.

The above equations are of the "power law" type. These are simple to use
but are not readily given a physical interpretation. Alternatively one may
use a Jlogarithmic law, as derived from the theory of boundary layer flow.
This is a more cumbersome formulation to use, but can be assigned a
physical meaning.

There are two commonly used forms of the "log-law" :-

1) U(z) = (U*/k).1n [(Z-d)/Z0] (9.3)
where d 1s the displacement height, Zo is the roughness length, U* 1is the
friction velocity and k is von Karmans constant ?= 0.4). ?ESDU90,91).

This form of the equation is confined to the constant stress layer (0-30m)
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ii) The Rossby formula as used by Jensen and Frank!7:-
(U(z)/U*) = (1/k).In[ (Z+Z0)/Z0] (9.4)
or the extended version for the whole boundary layer used by Deaves92,93:-

UEZ) - 11220 +5.75y-1.875y%-1.333y3+0. 25y° (9.5)
0

This form of the equation has the advantage of avoiding the use of the
displacement height which is not easy to determine.

The friction velocity can be estimated using :-
U* = k.(V(z) - 0.01z)/In((2+Z0)/Z0) (9.6)

where z is the height of the measurement, as long as y = z/Zg is small.
(Lawson2© )

Multipoint reference winds are required when 1local pressure coefficients
are used. One may require individual values of wind speed for the local
pressure coefficient, or the average windspeed over the whole facade for
the "whole face mean pressure coefficients" from eqn.7.1 and Fig.(7.3).
The following calculations were made of the mean windspeed appropriate for
use with the local mean pressure coefficients derived in Chapter 7.

In this case, the reference wind is given by :-

22
U = s U(z) dz
z1 (9.7)
z2
[ dz
zl

where z1 and 22 represent the heights of the upper and lower bounds of the
facade, thus for wall A, z1 = 0 and z2 = Ze, while for roof R, z1 = Ze and
22 = H (see Fig. 9.1).

le

0 Fig. (9.1)
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For a power law, the mean velocity is of the form:-

U= k .(z2(21) _ z1(atl)y (9.8)
Ta+I} (zZ2-2T]

In the case of the Rossby formula:-

22
U= s U(z).dz
21 (9.9)
22-2

= U*.[(22+Zo)1n(;2+20)f(zl+20)1n(zl+Zol - (1+In Zo) +
'S (zZ-2T)

+(1/(y2-y1).(2.875(y22-y12) - 0.625(y23-y13)

- 0.333(y2%-y1%) - 0.05(y25-y15)] (9.10)

The last group of terms reduces to (+0.0096((z2+z1)/2)) when (z2-z1)/h is
small.

The equivalent form of this equation for egn. (9.3) is:-

[(22 -d) In(z2- dl-(__-q)]n(zl d) - (1+1n Zo)J (9.11)
Z-Z

Although this form of equat1on is more complex, it is generally compatible
with the published expressions for the effects of terrain, shelter,
roughness changes and stability.

Of these perturbing factors, sloping terrain tends to dominate. Even a
slope as small as 1:50 can swamp the effects of a roughness change
(Panofsky and Petersen®“, Petersen and Taylor®>, Tieleman et.al.

For a single point reference wind one may use a correction of the form used
in CP3 and the French Code of Practice (R&gles NV 65).

For mu1t1po1nt reference winds, one of the numerical methods e.g.

Deaves’®, or Jackson and Hunt’®  would be more appropriate.
(see Table (8.1)).
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Next in importance is the effect of shelter. For the effects of local
shelter 1in the form of wind breaks and shelter belts, see Guyot©9%,
Perera®’, Raine and Stevenson®®. For the effects of neighbouring buildings
see Table (A2.2), Hussain and Lee28-31  and Soliman3:.

For the nature of the flow around a building, see Fackrell and Pearce??,
Castro and Dianat!0), Corke, Nagib and Tan-atichat23. The results from
these authors can be used to estimate the zone of influence of a building,
and thus, to some extent, the effect of a large building on the smaller
buildings in its wake.

In the case of an array of tall buildings, the mixing caused by the flow
around them is sufficient to destroy the structure of the wind profile.

Changes of roughness have been dealt with in some detail by

Blom and WartenalOl, Townsend102,103 ShirlO4 Wood105 and Deaves92,93,

That consideration of roughness changes 1s necessary can he seen upon

examining the values of fetch required to establish a new boundary layer.

(see Table (9.2)) The theory of Deaves92,93 has now been incorporated into
a new ESDU data item 82026 (91!, Lawson106 )

Weakest of the major perturbing factors on the wind profile on the scale of
a building is that of stability. The effect of departure from neutral
stability 1{s largely on the turbulent component of the wind, affecting the
scale and intensity of the eddies, and the distances over which they are
propogated. This effect can become notable if one is using the reference
wind corrected for turbulence of Corke et.al.23,24%, (see Chapter 4).

The effects on the temperature gradient will not usually be significant,
since the temperature drop over the height of the building is usually small
compared with the internal-external temperature difference. Where this is
not the case, Ti-To 1is itself small, and the stack contribution to
infiltration not very significant. There may be rare exceptions, e.qg.
when there is strong radiative cooling at ground level.

Table (9.1) Fetch required to establish a new equilibrium boundary
layer after a change in roughness.
(Deaves®2,93, ESDUS1)

a) Smooth to rough

Zo (m) 0.5 0.2 0.1 0.05 0.02
F/lg 52 68 84 105 139
Zg (m) 405 370 350 330 312
F (km) 21 25.2 29.4 34.6 43.4

b) Rough to smooth

Zo(u)/Io 2.5 6.0 15 40 100
F/2g 22 34 54 89 140
x 350 7.7 11.9 18.9 31.2 49

(km) (for Zo =0.1)
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10 Targets for future research

The present calculations have shown how the variation of pressure

coefficients with wind angle can be represented by a Fourier series. The

dependence of the a(i) coefficients of the Fourier series on side ratio and
shelter has been demonstrated. Further analysis of existing wind tunnel
data on local pressure coefficients should yield more detailed information

on the antisymmetric coefficients b(i). (Akins3°) It would be useful to
find other relationships such as eqn.(7.9), which relate local pressure

coefficients to whole face pressure coefficients using the physical

parameters of the building. (z/H, X/W, S)

Eventually, the results of Chapter 7 will be applied to the calculation of
pressure coefficients for use with computer models and tested against the
Air Infiltraton Centres model validation data sets .

The usefulness of the presently available data on wind pressures is still
1imited. The behaviour at lower windspeeds is not well known and should be
investigated, particularly with respect to the fluctuating pressures
arising from turbulence.

A study of the effect of adding a turbulent component to the reference
velocity, after the manner of the comfort criterion used by those studying
wind environment, (as proposed by Corke et.al23,2%), offers promise for the
unification of the pressure coefficient for different boundary layer
structures, and thus achieving the desired result of making the pressure
coefficient specific to the building alone.

The results of DalglieshS2 suggest that there is a strong contribution to
the fluctuating pressure arising from flow separation on the building
itself, superimposed on that from turbulence in the incoming flow. The
frequency ranges for these two components of the fluctuating pressure are
usually mutually exclusive. The simplified statistics associated with this
property should allow the prediction of the fluctuating pressures on the
building surface.

The probability distribution function (pdf) and cumulative distribution
function (cdf) as described by Holmes5“ also indicate a need to explore non
Gaussian effects in the separation regfons. This would allow a better
statistical treatment of the pressure differences to which the leakages 1in
the structure are exposed, and thus of the infiltration over a wider range
of conditions.

In order to incorporate such effects into a model we require a more
explicit method relating flow through a crack to a fluctuating pressure
signal. It may be possible to adapt the transfer function approach of
Gumley“2,50 for flow in tubes connected to a manifold.

Future wind tunnel studies, in the light of the use of harmonic analysis
techniques, should include the systematic investigation of other building
shapes, e.g. those composed of combinations of simple block forms, those
with pitched roofs, and those with curved surfaces.

The sheltering effect of neighbouring buildings on the pressure
distribution also merits further investigation. This report gives some
results, but for one type of array spacing only. The work carried out at
Sheffield University (Hussain, Lee and Soliman28-31 and Soliman34) offers
some indications of the trends to be expected, but the results are not
presented in a form which can be analysed as above.
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Appendix 1: Survey of pressure measurements in the real wind.

(Initial data from Appendix 2. from Symposium on Full Scale Measurements
of Wind Effects on Bui1d1ggs and Other Structures. University of Western
Ontario June 23-29, 1974)>

Key

Analysis: M = mean, E = peak, P = probability, S = power spectrum,
X = cross correlation

Type:- S = stone, St = steel, T = timber, C = concrete, R.C. = reinforced

concrete, G = glass, Fb = fibre, P1 = plastic, comp. = composite,
Pa = panel, Cst = cast.
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Appendix 2: Survey of Wind Tunnel Studies.

Key

E.W.T. = Environmental wind tunnel

M.W.T. = Meteorological wind tunnel

T.B.L.W.T. = Turbulent boundary layer wind tunnel
L.S.W.T. = Tow speed wind tunnel

I.A.W.T. = Industrial Aerodynamics Wind Tunnel
B.L.W.T. = Boundary layer wind tunnel

A.W.T.= Aeronautics wind tunnel

L.Sec = long section,

Sh.Sec = Short section

0.C. = open return

C.C.= closed circuit

v. = velocity

t.=time

Dimensions given in metres (feet)

f.s.e. = full scale equivalent

Pressure measurements:- d = pressure differences, S=spectra available
Analysis:- M = mean, R = r.m.s, E = peak values, X = cross spectra,

S = spectrum

reference points for Cp:- f = free stream, r = roof level, 1 = local
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Additional references on instrumentation and measurement methods

Bergh and Tijdeman (221)
Hoxey and Wells (222)
Irwin (223)

Lam (224)

Mayne (225)

Meert and van Ackers (226)
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THE AIR INFILTRATION CENTRE was inaugurated through the International Energy Agency and
is funded by ten of the member countries:

Belgium, Canada, Denmark, Netherlands, New Zealand, Norway, Sweden, Switzerland, United
Kingdom and United States of America.

The Air Infiltration Centre provides technical support to those engaged in the study and
prediction of air leakage and the consequential losses of energy in buildings. The aim is to
promote the understanding of the complex air infiltration processes and to advance the effective
application of energy saving measures in both the design of new buildings and the improvement
of existing building stock.

: = : Old Bracknell Lane West, Tel : National 0344 53123
All' |nf||trat|0n Centre Bracknell, Berkshira, International + 44 34453123
Great Britain, Telex: 848288 (BSRIACG)
RG124AH. ISBN 0 946075 12 3

Operating Agent for International Enargy Agency, The Oscar Faber Partnership, Upper Marlborough Road, St. Albans, Herts, Graat Britain,
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